
J .  Fluid Mech. (1996). 001. 312, p p .  279-298 
Copyright @ 1996 Cambridge University Press 

279 
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A rotational shear flow is examined in the parallel plate geometry for the Oldroyd-B 
fluid. The Stokes solution is found to have eigenfunctions in an unbounded radial 
domain while it is unique for general boundary conditions in a finite radial domain. 
Critical conditions for the onset of an axisymmetric secondary flow are determined 
for the viscoelastic fluid, and we show that there is an almost linear relationship 
between the aspect ratio of the plates and the critical Deborah number for this 
model, especially at small values of the aspect ratio. The form of the initial secondary 
flow is also in agreement with experimental results obtained for a Boger fluid. 

1. Introduction 
Rotational flow instabilities were first observed in parallel plate rheometers over 

a decade ago by Jackson, Walters & Williams (19841, who observed antithixotropic 
behaviour in a Boger fluid. This instability had been predicted by Phan-Thien (1983) 
in a theoretical analysis of the Oldroyd-B model of a viscoelastic fluid. Assuming 
that the parallel plates were of infinite extent, Phan-Thien was able to show that 
an elastic instability occurred in the viscometric base solution at a critical value of 
the rotation rate. The unbounded radial domain permitted the use of Lie group 
symmetries to reduce the order of the problem, and allowed an analytic result to 
be obtained. However, the unbounded radial domain excluded the possibility of 
examining the effect of varying the gap width of the plates on the critical rotation 
rate. This was achieved experimentally by Magda & Larson (1988), who examined 
the effect of varying gap width on the critical rim shear rate y ,  and concluded that 
p was approximately inversely proportional to the gap width. The flow visualisation 
experiments of McKinley et al. (1991) showed conclusively that the apparent shear 
thickening was not due to a build up in the structure of the fluid, but rather to the 
development of a secondary flow. This flow was initially axisymmetric with roll cells 
forming at the centreline travelling outwards, and those forming at the outer edge 
travelling in towards the centre. The disturbance quickly became non-axisymmetric 
with the formation of spiral vortices, and finally developed into fully nonlinear flow. 
They also showed that the amplitude of the initial disturbances increased exponentially 
in time, indicating that a linear stability analysis is an effective method of determining 
critical points on the solution curves. 

In dealing with a theoretical prediction of the instability, all of the current work 
(with the exception of Olagunju 1994) utilizes semi-infinite geometry to obtain solu- 
tions. Olagunju used a regular perturbation scheme to study secondary inertial flows 
that occur for fluids with arbitrary relaxation times. He investigated these flows using 
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a geometry in which the fluid was held in by surface tension. Beyond a critical rotation 
rate the scheme broke down, indicating either that a critical rotation rate had been 
reached, or that the scheme was no longer valid beyond this rate. 

Oztekin & Brown (1993) examined the stability of the base viscometric flow to 
radially localized disturbances for the Oldroyd-B model in the semi-infinite domain, in 
an attempt to emulate the experimental results of McKinley et al. (1991) numerically. 
In solving the resulting system of ordinary differential equations obtained from their 
three-dimensional analysis, they determined that at a critical value of the dimensionless 
radius (a function of rotation rate) elastic instability produced a secondary flow, with 
the most dangerous mode being non-axisymmetric. Axisymmetric disturbances were 
only slightly less unstable. For a suitable choice of the single relaxation time of 
the Oldroyd-B model, their analysis agreed quantitatively with the experiments of 
McKinley et al. (1991). 

This analysis was extended by Byars et al. (1994), who conducted a series of 
experiments using two polyisobutylene/polybutene Boger fluids. The first was the 
same as that used by McKinley et al. (1991) and the second was a more dilute 
solution with a smaller elastic contribution to the total viscosity. They were able to 
extend the analysis of Oztekin & Brown (1993) using the Chilcott-Rallison model. 
In this model the polyisobutylene molecules are treated as a dilute solution of non- 
interacting dumbbells, the end beads of which are connected by a spring of finite 
extensibility. This results in a nonlinear constitutive equation that allows for the effect 
of shear thinning of the first normal stress difference. Using the fact that the stress 
ratio (the local ratio of the first normal stress difference to the shear stress) increases 
linearly outward from the centre of the discs in the radial direction for the OIdroyd- 
B model, while approaching a limiting constant for the Chilcott-Rallison model, 
they showed that the instability occurring at the critical radius ( R 1 )  of the Oztekin & 
Brown analysis was then damped by shear thinning and disappeared beyond a second 
critical radius (R2). The advantage of this is that the boundary conditions at the outer 
edge, and the symmetry conditions at the centreline, can be neglected. Once again, 
non-axisymmetric disturbances were the most unstable, and this was borne out by 
the accompanying experiments. The resulting secondary flow was well described by 
the analysis, except that the critical radii calculated were smaller than those obtained 
experimentally. 

The analyses of Olagunju and Byars et al. (1994) indicate that the presence of 
the free surface is not of extreme importance, since it is perturbed by only a small 
amount due to secondary flows, so that the significant factor in the observed difference 
between the eigenfunctions of Phan-Thien’s analysis, and the observed disturbance 
field of McKinley et al. (1991), is due to the presence of an outer boundary. We 
assume discs of finite extent, with the fluid being held between the plates by a 
rigid frictionless outer bounding shell. This assumption seems sufficient to achieve a 
far more accurate correspondence between theory and experiment. The simplifying 
assumptions (e.g. symmetry reduction, normal mode analysis), can no longer be 
applied, and we must solve a two-dimensional problem for the case of axisymmetric 
disturbances. We restrict ourselves to axisymmetric instability as a first step to a more 
physically realistic model, so that the results compare most closely with the original 
experiments of McKinley et al. (1991). 

Most of the current work on rotational instabilities has dealt experimentally with 
Boger fluids, and theoretically with the Oldroyd-B model, one of the simplest con- 
stitutive equations used to describe the behaviour of viscoelastic fluids (a thorough 
account is available in the review article of Larson 1992). However, available evidence 
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suggests that the Oldroyd-B model, while able to predict the form of the secondary 
flow, may not be sufficient to quantitatively predict the critical rotation rate for the 
onset of the disturbance in these Boger fluids. The single relaxation time of the model 
is generally determined by the zero-shear-rate first normal stress coefficient, while 
some Boger fluids have been shown to exhibit a certain amount of shear thinning of 
the first normal stress coefficient (McKinley et al. 1991). We show that the correlation 
between theory and experiment is greatly improved when the relaxation time is chosen 
to reflect the shear rate at which the instability sets in. 

The bounded case also cannot readily be reduced to the unbounded case in a 
limiting sense. This is evident in the preliminary results obtained for both cases on the 
uniqueness of the torsional flow solution. We show that the simplification of assuming 
an unbounded flow leads to a loss of uniqueness of the torsional flow solution in 
the case of Stokes' flow, while the solution for bounded flow is unique. Hence, the 
unbounded case cannot be considered as a limiting process of the finite geometry. 

2. Governing equations and flow geometry 
To model the parallel plate rheometer we assume a geometrical construction of 

two circular discs with a common axis through their centres. The discs are a distance 
d apart and have a common radius (see figure 1). Two radial lengths are considered. 
In the first we consider the semi-infinite geometry in which the radial coordinate is 
unbounded, while in the second we assume that the fluid is enclosed at I-. = R by a 
frictionless bounding shell (one that cannot sustain a shear stress). The top plate is 
set spinning at an angular velocity o, while the bottom plate remains stationary. 

The governing field equations are 

(1) 

where p is the fluid density, $ the material time derivative, P. the pressure field, 
and S, and v, the extra stress and the velocity fields respectively. S. is given by 
S, = 7,. + zP., the solvent and polymeric contributions to the stress. The solvent 
contribution is simply the Newtonian stress term z,. = 2qSD., while for the polymeric 
stress, we consider the upper convected Maxwell model, 

The constitutive model collectively is known as the Oldroyd fluid B. Here we have 
A as the sole relaxation time, L. = ( V . V , ) ~  is the velocity gradient tensor, with 0 ,  
as its symmetric part, and the total viscosity q = qs + qP. We focus on the Oldroyd- 
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B model, since most of the experimental work (Magda & Larson 1988; McKinley 
et al. 1991; Byars et al. 1994) was done using Boger fluids, which are supposedly 
amenable to this simpler type of constitutive equation, having only two material 
parameters (actually three parameters, but only two dimensionless groups remain after 
normalization). The model predicts constant viscosity y and a constant first normal 
stress coefficient Y 1. However, experimental evidence from several investigators shows 
significant differences in the rheological behaviour of different Boger fluids. In Larson, 
Shaqfeh & Muller (1990), the 1000 p.p.m. Boger fluid examined shows little shear 
thinning over the range of shear rates covered. The current investigation compares 
numerical results with experimental results obtained by McKinley et al. (1991) for a 
3100 p.p.m. Boger fluid. While maintaining a constant viscosity over the relevant range 
of shear rates, Y1 exhibits a moderate amount of shear thinning (to approximately 
one quarter of its initial value). 

For cylindrical polar coordinates ( r* ,  6,  z , )  in the finite regime we non-dimensionalize 
as 

z* r ,  ve* V r *  VZ* u, = -, t = ot,, vfj = -&’ u, = ~ z = d ’  r = -  R’ oR’ o d  
d podR , p = P  Y De = h, E = - Re = __ 
R’ Y Y ’  

De is the Deborah number, being the ratio of fluid relaxation time to the characteristic 
time scale, Re is the Reynolds number, p is the retardation parameter ( p  = 0 gives 
the Newtonian case, while p = 1 gives the Maxwell model), and E is the aspect ratio 
of the discs. 

To non-dimensionalize in the semi-infinite regime the radial coordinate, and veloc- 
ities, must be scaled by d. The non-dimensional groups are scaled accordingly and 
the equations of state and boundary conditions (except at r. = R )  for this geometry 
are recovered by setting E = 1. 

2.1. Boundary conditions 

The no-slip boundary conditions on the upper and lower plates require that 

v, = u, = ug = 0 at z = 0, 
u, = v, = 0, ve = r at z = 1. (4) 

Symmetry conditions at the centreline dictate a zero radial and azimuthal velocity, 

uI = vg = 0, z , ~  = z,, = 0 at r = 0. ( 5 )  

as well as zero shear stress there, i.e. 

Boundary conditions are not generally imposed at infinity, which is shown later in 
the text to lead to loss of uniqueness of the Newtonian solution to another physically 
realistic solution. 

In the finite geometry, we have no flow through boundary (v  .n = 0, n = (l,O,O)), 
and the traction only acts in a direction normal to the boundary (z n - z : nnn = 0),  
i.e. 

vr = 0, z,g = z,, = 0 at r = 1. (6) 
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3. Solutions for Newtonian and viscoelastic flows 
In the absence of inertia, the steady torsional flow solution (v  = (0, rz, 0)) is valid 

for the Oldroyd-B model, in the unbounded case, since the flow is controllable. What 
is not generally known is that it is also valid for the bounded case, as it satisfies the 
boundary conditions exactly at r = 1. The governing equations may be written as 

aP 1 a 
r 

For the Oldroyd-B model, the base torsional flow is given by 

ue = rz ,  ur = u, = 0, 

z , ~  = z,, = z,, = z,, = 0, 

P = P,,,,, - Depr2, 

zgi = pr,  z ~ t )  = 2Depr2. 

3.1. Newtonian case 
Any stability analysis of these viscoelastic solutions relies on the uniqueness of the 
Newtonian solution. Viscometric measurements using the parallel plate rheometer rely 
on the fact that the torsional flow solution is valid, which is true only when inertia 
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is negligible. Hence, in determining the uniqueness of the Newtonian solution we 
need only consider Stokes flow. The uniqueness of the Newtonian solution becomes 
important when a stability analysis is conducted on the viscoelastic base solution. 
If another Newtonian solution exists, its functional form must be excluded from 
general functional form assumed for the disturbances. The Newtonian solution may 
also be a reasonable physical solution itself, and possibly the cause of the observed 
disturbances. The governing Stokes equations in the absence of non-conservative body 
forces can then be written in cylindrical polar coordinates as 

U,(z) cos(n6) + U ~ ( Z )  sin(n6) 

Vl(z)cos(n6) + VZ(z)sin(ne) , 

, 

I m 

We must also apply the continuity equation, given by (10). 

3.1.1. Non-uniqueness in unbounded JEow (e = 1) 

The uniqueness proofs of Ladyzhenskaya (1969) (which date back to Helmholtz) 
and others for steady Stokes flow in a domain that is unbounded in some direction 
require that u + 0 in some sense as r + GO, usually as 0 ( r - ’ ) .  There is no such 
requirement in this geometry, so the existence of eigenfunctions is a possibility. 
Axisymmetric eigenfunctions exist, but they involve modified Bessel functions of the 
first kind ( I n ( r ) ) ,  which behave exponentially as r GO, an unreasonable demand 
on the fluid body. For a more physically realistic response we look for a similarity 
solution of the von Karman form (von Karman 1921), and introduce the azimuthal 
coordinates in a Fourier-type expansion : 

vz = { w(z) + 5 W~(Z)COS(IZ~) + W2(z)sin(n6) 
n=O 

cc 
P = Po (z) + r2P2 ( z )  + C (P; ( z )  + r2Pi (z)) cos(n6) 

n=O 
co + C (Pi (z) + r2Pi  (z)) sin(nB), 

n=O 

Continuity, combined with compatibility in the functional form required by the 
momentum equations gives u = -iw’, U, = v,, u1 = -v2, W* = W, = P; = p i  = 0, 
n = 2. The Stokes flow solution then becomes 
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u, = r { p;(z2 - z )  cos 28 - P;(Z - z 2 )  sin Z Q }  , 1 
ug = r ( z  - ~ i ( z 2  - z )  sin 20 - ~ i ( z  - 2 2 )  cos 2 e > ,  I 
uz = 0, 

P = {C+r2[P;cos28+P,”sin28]}, J 
where C is constant, and Pi ,  P i  are the amplitudes of the eigenfunctions. To visualize 
the planar motion, we introduce a stream function 

1 av av 
r 36 dr 

u, = ---, ug = -. 

In Cartesian coordinates (x, y), the stream function becomes 
Z 

= - [ (1 - P; (1 - z ) )  x2 + P i  (1 - z )  xy + (1 + Pi  (1 - 2)) $1 
2 

This is a quadratic form with discriminant 

2 
The streamlines in the (u,8)-plane are elliptical when (Pi)’ + (P;) < 1, and 

hyperbolae otherwise. It is interesting to note that the functional form in (21) with 
the functions of z replaced by functions of z and t also reduces the fully time- 
dependent three-dimensional Navier-Stokes equations by two spatial dimensions 
and results in a closed system in u,w,U = U1,V = V,,  and P. With the notation 
a f l a t  = j-,  a f l a z  = y, 

(23) 

W’ +Lw’2 4 - u2 - LWW” 2 + 1 4 (u2 + V 2 ) )  = -;w’’’ - 2p2 ( t )  > 

Re { V  -w’u + wu’} = v“, 

Re {W -tww’} = w” - P& 

Re U -w‘U + wU’} = U” - 4P; ( t ) ,  { 
= V” + 4P,” ( t ) .  

3.1.2. Uniqueness in bounded flow 

The uniqueness proof of the bounded torsional flow can be constructed along the 
lines of the arguments given in Ladyzhenskaya ( 1969). Essentially, the dissipation 
due to the difference between two different (postulated) Stokes solutions is calculated, 
and is shown to be nil due to the form of the boundary conditions on the upper and 
lower plates, and the bounding surface at r = R. This then leads to a unique solution 
in this geometry. This is also true in the case of a real free surface at r = R, since the 
boundary conditions are of a similar form. 

The situation with a small amount of inertia is quite different. Olagunju (1994) 
conducted a perturbation analysis of the coaxial disc flow of the Oldroyd-B fluid 
with inertia. He was able to conclude that a secondary inertial flow existed for all De, 
which became unstable at the critical value 
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Since we are considering purely elastic disturbances to the base flow, we neglect 

4. Linear stability analysis 
In order to examine the stability of (17), we assume disturbances of the form 

u = u, + 6Re [e(n/De)t u(r ,  z ) ]  , 

z = z, + 6Re [e(‘/De)t a ( r ,  z ) ]  , 

P = Po + 6Re [e(‘’De)tp(r, z ) ]  , 

where Re [.] represents the real part, and vo, zo, and Po are the base solution. 
We can now apply the conditional stability theorem (see, for example, Iooss & 

Joseph 1980), which states that in order to determine the stability of a solution it is 
sufficient to study the linearized equations for the perturbed flow about that point, pro- 
vided that the disturbances are small. This is accomplished by making 6 a small param- 
eter and then linearizing with respect to this variable. The growth rate 0 determines the 
stability of the base solution at any particular values of the Deborah number De, the 
retardation parameter p, and the aspect ratio E. If Re (0) < 0, the base solution is sta- 
bie, Re (a) > 0 implies the solution is linearly unstable in this region of (De ,  E,  b)-space, 
and Re (0 )  = 0 gives the so called neutral stability curve in the (De ,  1)- or (De,  b)-plane. 

Substitution of (24) into the constitutive equations yields the perturbed stress field 
as a function of the perturbed velocities, 

(27)  

(28) 

Or@ = __ (29) 

GO, = ____ . (30) 

P 2 3% 

228 aur 

Or= == l+o (2 + E  i.> 9 

Orr = __- 
I + G  ar’  

These stresses may then be substituted into the momentum equations to obtain 
four equations for the perturbed velocity and pressure fields. The pressure term is 
eliminated, and a stream function introduced so that continuity is identically satisfied, 

(31) 
1 acp 
r dr 

a, = --. 1 d(P 
r dz ’  ur = 

The final two governing equations are eventually obtained: 

( 1 + o ) [ l + o ( l - - P ) J  

( 3 4  
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a3cp +(1  +a)2[1 + o ( l -  
d2U@ 

2DeP (1 + a) (2 + a) __ + 2De2P (3 + a) ~ 

a z 2  dz2dr 

5. Numerical solution 
The orders of the various derivatives in these equations imply that there must be 

six boundary conditions in both the radial and axial directions to uniquely define the 
eigenvalue problem. 

The boundary conditions at r = 0 are introduced through symmetry arguments. 
Expressed in terms of the stream function, the stress and velocity boundary conditions 
at r = 0,l  become 

-- l a q  -a - (‘9) =.; (?) =o. r dz  ar r ar 

A mixed Tau-Galerkin procedure was used to solve the equations, utilizing a Fourier 
series in the axial direction owing to the symmetry of the boundary conditions at 
z = 0 and 1. In the radial direction, a Chebyshev series was chosen, owing to its 
minimax properties, and its ability to resolve the solution inside a boundary layer 
(see Gottleib and Orszag 1977). 

There also exists the possibility of using a single-domain or multi-domain approach 
in the discretization of the region. It has been shown (e.g. Peyret 1989), for a Chebyshev 
spectral method, that a single-domain approach is best for a function which exhibits 
large variation at r = kl, while a multi-domain approach is best for a function with 
a large variation at r = 0. 

Making the substitution r = i (x  + l), provides the best resolution at both bound- 
aries, owing to the clustering of the zeros of the Chebyshev polynomial at x = +1, 
and the results show that the region of greatest variation in dependent variables is 
near the outer bounding wall. Hence, a single-domain approach is preferred. 

Owing to the symmetry of the geometry, we may assume that u, and ug are odd 
functions of r ,  while u, (and hence cp) is even in r. We can now extend the radial 
domain to -1 d r d 1, so that first-kind Chebyshev polynomials can be used in 
the spectral approximation. This also simplifies the implementation of the singular 
boundary conditions at the centreline, since they are automatically satisfied by the 
trial functions. 

Following the work of Zebib (1984), the highest-order derivatives of the dependent 
variables in the governing equations are expanded as series of orthonormal functions : 

T,(r) is a Chebyshev polynomial of the first kind, orthonormalized so that To(r) = 
n-1/2, Tl (Y )  = (2n)’/’r, T2 (r) = ( 2 ~ ) ” ~  (2r2 - l), T,+I ( r )  = 2rT, ( r )  - TnPi ( r ) ,  n > 2. 

These series are then integrated, and the constants of integration determined by 
the boundary conditions. Once the trial functions are determined, we make the 
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substitution x = 2r - 1, and consider only the region [0, I] in r or [-1, I] in x. This 
substitution improves the resolution near r = 0 and 1, and greatly increases the rate of 
convergence of the spectral approximation. The Galerkin trial functions then become 

m n  

where A,  I?, Y ,  and @ satisfy all of the imposed boundary conditions. 

0, respectively, where Z1 and 3 2  are linear partial differential operators. Also, let U@N 

and cpN be the Nth partial sums of ( 3 6 )  and (37) .  We can now introduce the Petrov- 
Galerkin scheme by forming the residuals of (32) and (33 ) ,  and taking an appropriate 
inner product in the usual manner, i.e. 

Consider (32)-(33) as being in the form 31 (q?, cp; De, a, P, E )  = 0,32 (u8, cp; De, a, P, E )  = 

I (31 ( U f f N ,  ( P N )  I u8mk)  = 0, u8mk = h f l m - k + l ,  

(Pmk = y k @ m - k + l  7 m = 1, -) N ,  k = 1 , ~  m, ( 3 2  ( u 8 N ,  ( P N ) ,  q m k )  = 0, 

with 

5.1. The matrix eigenvalue problem 
Substitution of the spectral approximations into (38) yields an algebraic eigenvalue 
problem of the form 

[a3B3 (De, P , E )  + g 2 6 2  (De, P, E )  + a61 (De, P, E )  + A  (De, P, E ) ]  u = 0, (39) 

known as a cubic eigenvalue problem, where A, 6 1 ,  BZ, 6 3  are all square matrices of 
size N ( N  + 1) = NT.  For each De there will be 3NT eigenvalues a with corresponding 
eigenvectors u. The eigenvector is simply the vector of the unknown coefficients of 
U8N and (PN, i.e. 

(40) 
T 

&' = (aO,al,..,aNr/2-1,bO,bl,..,bNr/2-l) . 
In order to examine the linear stability of the base solution (17) we must determine 

the critical Deborah number (Dee) at which the eigenvalue of largest real part crosses 
the imaginary axis. Let 

/Z(A,B1,62,63)= (a :det(a363+a262+aB1 + A )  = O } ,  (41) 
then the base solution will be linearly stable if V (a E 2 (A,  6 1,62,63)), Re (a) < 0, 
and unstable if 3 (a E /Z(A,61,62,63)), Re(a) > 0. Neutral stability will occur at 
De, when the eigenvalue with largest real part, ac is such that Re(a,) = 0. In this 
case the critical eigenvalue will have the form ac = a, f iai, with a, = 0. As a result, 
there will be two time-periodic critical eigenfunctions. 

Three solution methods are employed in determining the eigenvalues of (39). The 
first, and most direct, involves treating @(a,De) = det ( 0 ~ 6 3  + a262 + a61 + A )  = 0 
as a nonlinear equation in a. The problem can then be solved by Muller's method for 
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the complex solutions. This allows for some simplification since there are not strictly 
3NT solutions, but only :NT (since B3 is a singular matrix of rank N T / 2 ) .  There is 
also the solution (T = -1, of multiplicity NT/2. Hence we need only solve for 2NT 
eigenvalues for each De. If we solve the system for a particular Deborah number 
(say Deo) we can determine the eigenvalue of largest real part, oo (in general there 
will be a complex pair of critical eigenvalues, either of which is suitable, and these 
can be used to determine the accuracy of each of the numerical schemes). Starting 
with @ (00, Deo) = 0, we can then use some form of tracking scheme (e.g. a homotopy 
method) to follow (TO as Deo is increased to De, ,  at which point (TI now lies on the 
imaginary axis. A simple secant method for De followed by a Muller's method solution 
for CT seems to work if the initial guess is close. There is of course no way of telling if 
Del is the critical Deborah number unless we solve the complete problem once again. 
For a large number of trial functions this method is cumbersome, and Muller's method 
has difficulty distinguishing between solutions when the eigenvalues are close packed, 
as in a large system. However, if an estimate of De, is made with a small number 
of trial functions, we can use these values as an initial guess for a larger number of 
trial functions, and obtain a solution quickly since we are only required to find one 
ordered pair (ol,Del). The next two methods are mainly concerned with checking 
that the solution obtained in this manner is in fact the critical Deborah number. 

Equation (39) can be transformed to a generalized eigenvalue problem by letting 
u = (02v,  (TU, v ) ~ .  The system then becomes 

0 0  
0 " ) u = C T ( ;  0 O f  I o ) * ,  (42) 

-,"' 
which is in the form of Tu = fl u, the generalized eigenvalue problem. The solutions 
can be found using the standard QZ algorithm subject to the consideration that N T / 2  
of them will be infinite, owing to the rank deficiency of B3. This method works well 
for medium sized matrices, however it becomes intractable for larger sparse systems. 

and fL become large ( > 470 x 470 or 12 trial functions), a more 
efficient method is required to solve the large sparse system which results. We use the 
enhanced initial vector approach discussed by Saad (1992). This method is essentially a 
combination of a Krylov subspace technique and polynomial iteration on the system 
matrix Q-' x 

As the matrices 

Since B3 is singular we must introduce ,u = G-', so that the system becomes 

{Bj-kpB2+p2B1 $ p 3 A } U = 0 ,  

and with w = (p2v, p v , ~ ) ~ ,  we have the system 

0 - : 3 ) w = , u ( ;  0 0  ; 9 ) " .  
(-:' -:2 0 

The matrix on the right hand side is now invertible, since A is in general invertible, 
and we obtain a standard eigenvalue problem 

0 (43) (a' 8) (-? 0 - 6 2  I 0 

where Z is the system matrix. 
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FIGURE 2. Determining outliers of the eigenvalue distribution 

It is important to note that the transformation p = K' preserves the position of 
the eigenvalues with respect to the half-planes, i.e. if Re(a)  > 0 then Re(p) > 0, and 
similarly for the left half-plane. In fact for a general complex number z = reie then 
the complex mapping w = zP1 = r-le-ie results in a vector whose length is IzI-' with 
argument determined by reflecting z in the real axis. 

The infinite eigenvalues encountered in the generalised eigenvalue problem are 
mapped to 0, giving N T / 2  spurious modes at the origin. 

In the enhanced initial vector approach we choose an arbitrary starting vector Z O ,  

and choose the centre c and focal distance e of an ellipse E in the complex plane. 
Since Z is a real matrix, the eigenvalues will be placed symmetrically with respect to 
the real axis, so we choose c to be on the real axis, and e to be either purely real or 
purely imaginary, see figure 2. 

The idea is that if pl is outside the ellipse, then we would like to find a polynomial 
p k  (Z), of degree k so that, for large k,  Z k  = p k  (Z) 20 approaches a multiple of the 
eigenvector of pl. More precisely, if 

3 N r  

zk = $1 w1 + $i p k  (pi) wi, 

i=2 

with pk(p1) = 1, and @k the vector space of all polynomials of degree d k, then we 
wish to find the polynomial which satisfies 

It turns out that the asymptotically best polynomial (k  ---f co) is 

where c k  (cos 0) = cos k0  is the Chebyshev polynomial of the first kind. 
In general, the Chebyshev iteration process leads to a vector of the form 

z k  = $1 w1 f $2 w2 + ... + 8, wq + 8, 

where the eigenvalues p1 , .., p ,  lie outside the ellipse E ,  and E is a small vector compared 
with the others, being the contribution from the eigenvalues inside E.  To 'purify' z k  

and determine the extreme modes p ~ ,  . . ,pq, we use the Arnoldi method, given the 
fact that the KryIov subspace K ,  = span ( z k ,  Z z k ,  ..., ,??Zk) is invariant. Under this 
condition, the approximate eigenvalues determined by the Arnoldi method will be 
exactly PI, .., pq. It is relatively easy to obtain good estimates for c and e from the use 
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N N r  De, 5?- gi 

4 20 7.3301 5.53 x 0.56794 

10 110 8.0747 -8.68 x 0.70463 

12 156 8.0737 8.60 x 0.70453 

TABLE 1. Convergence of the linear stability analysis for e = 1 and /I = 0.41 

7 56 8.0158 -1.85 x 0.69770 

11 132 8.0737 -2.30 x 0.70455 

- 2 " " " " " "  ' " " " " " '  
-1.5 -1 .o -0.5 0.0 

0, 

FIGURE 3. Eigenspectrum for p obtained by the enhanced initial vector approach; N = 12, E = 0.1 
and f l  = 0.41, De = 8.0737. The critical eigenvalues are boxed. 

of a smaller number of trial functions, so that this method is an efficient check that 
Del is indeed De, when we consider a large number of trial functions. 

6. Convergence results 
Owing to the bounding wall at r = 1, we cannot take the limit E + 0 to obtain 

the analytic result of Phan-Thien (1983) in order to check the validity of the scheme. 
Other results (Walsh 1987; Crewthers, Huilgol & Josza 1991; Oztekin & Brown 
1993; Byars et al. 1994) also use semi-infinite geometry. The perturbation scheme 
of Olagunju (1994) predicts a different form of instability, so that only qualitative 
comparison can be made with the existing results. 

In table 1 we examine the convergence characteristics of the scheme, for particular 
values of the material and geometrical parameters. This case required 66 independent 
trial functions in each of the dependent variables to achieve 5-6 significant figure 
accuracy in De,. In general convergence is slowed with a decrease in the aspect ratio, 
though this relationship is not monotonic. Accuracy is also degraded with decreasing 
E, as the differing magnitudes of the length scales h, R are a feature of stiff boundary 
value problems in general. At values of F of the order 0.1, only 3 to 4 significant 
figures are possible. Although infinite-order convergence is theoretically possible with 
the use of this Galerkin scheme, N is restricted by the rapidly increasing condition 
number of Z with N .  

Convergence of both Muller's method and Chebyshev iteration is aided by the fact 
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De = 8.0737. The critical eigenvalues are boxed. 
FIGURE 4. Eigenspectrum for 0 obtained by Muller's method; N = 12, E = 0.1 and = 0.41, 

that the complex-conjugate pair of critical modes is well separated from the rest of the 
eigenspectrum, for all values of N .  Figure 3 shows a typical example for the enhanced 
initial vector approach while figure 4 shows a typical array used for Muller's method 
(a total of 312 non-trivial eigenvalues are displayed). 

The behaviour of the eigenfunctions is easily determined, and the convergence is 
illustrated in figure 5 (solid lines represent positive values of the stream function, and 
dashed lines, negative values). Owing to the axisymmetry we need only consider the 
(Y, z)-plane in examining the streamlines cp. 

7. Results and discussion 
The inclusion of a bounding wall at r = 1 leads to significant differences to earlier 

analyses, both quantitatively, and qualitatively in the critical De and the resulting 
secondary flow. However, trends such as monotonicity of De, in 1-3 are still in agreement 
with theoretical analyses conducted in the infinite radial geometry (Phan-Thien 1983 ; 
McKinley et al. 1991; Byars et al. 1994; Crewthers et al. 1991; etc.). Use of the finite 
domain requires solving the full two-dimensional problem, since group symmetry 
reductions or normal mode analysis cannot be applied owing to the extra boundary 
conditions. It is, however, now possible to determine the effect of a changing aspect 
ratio on the critical Deborah number and hence the critical shear rate. For this 
geometry, the rim shear rate j = De/ (Ae).  

Figure 6 shows the relationship between the critical Deborah number and the 
retardation parameter, which is a measure of the elasticity of the fluid, for three 
aspect ratios. Analysis shows that the singularity near p = 0 scales approximately 
with the square-root singularity of both the Phan-Thien and Olagunju analyses, shown 
here by the dotted and dot-dot-dashed lines respectively. 

In figure 7 the critical Deborah number is plotted against the aspect ratio. For fluids 
with an average to high concentration of viscous solvent ( p  5 O S ) ,  there is an almost 
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FIGURE 5. Convergence of the disturbance stream function with: (a) N = 6,De = 2.8427; ( b )  
N = 9,De = 2.8414; (c) N = 11,De = 2.8434; (d) N = 12,De = 2.8434. For all figures 
a = 0.41 ,~  = 0.25. 

FIGURE aspect ratios. 
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FIGURE 7. Plot of the neutral stability curves in the (De,&)-plane for a range of a values. A linear 
relationship is apparent for all values of fi  at small aspect ratio. 

linear dependency between De, and E, while for a lower concentration of solvent this 
relationship is true for aspect ratios below about 0.2. In fact, the critical Deborah 
number can be written as De, = &K1 + K2,where K1,2 depend on p (for ,4 = 0.41, 
which is the relevant value in McKinley et al. 1991 and Byars et al. 1994, K1 = 7.1 
and K 2  = LO), and the critical dimensionless rim shear rate is ,lBc = (K1 + & / E ) .  

This has been observed experimentally by Magda & Larson (1988), and McKinley 
et al. (1994). The critical rim shear rate is inversely proportional to the aspect ratio 
only when E is small. Note that eigenvalues became inaccurate for E < 0.04, and they 
were not plotted. 

The nature of the elastic instability becomes apparent when the form of the 
disturbance stream function is considered. If we assume from the solution to (39) that 
the stream function is of the form cp = cpr + icp, with 0, = k i p ,  the final disturbance 
has the form (9, cos y t  - cpl sin y t )  f i (qpl cos y t  + 9,. sin y t ) .  The real and imaginary 
parts of this function are the two possible forms of the secondary flow. Higher-order 
analysis is required to determine which of the two is the stable mode. This type 
of analysis was recently accomplished for the unstable Taylor-Couette flow of the 
Oldroyd-B fluid by Avgousti & Beris (1994). The two important components of both 
disturbances are cpr and cpI ,  and these are presented in figures 8 and 9 (9, is shown in 
part i and cpc in part ii, the solid lines represent positive values of the stream functions, 
and dashed lines, negative values). The main difference between cpr and cpi is not readily 
apparent at small aspect ratios ( E  < &) and this is due to the fact that the amplitude 
of the roll cells near r = 0 is several orders of magnitude smaller than the amplitude 
of the roll cells near r = 1. This is similar to the type of disturbance predicted by 
Oztekin & Brown (1993), and observed in Byars et al. (1994). In figure 8 we examine 
the inner region of the discs and find that cpI has roll cells that attenuate towards the 
centre of the discs near the outer edges. This eigenfunction also has a larger radial 
wavenumber. We note that for E = & the cpr has 9 roll cells, while cpl has 10. 

In Figure 9(a) the streamlines are shown when the aspect ratio is 1. There is 
a dominant roll cell, surrounded by several smaller cells rotating in the opposite 
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FIGURE 8. The inner region of the flow. The multiple axial roll cells are readily apparent for the 
geometry with E = 0.1, p = 0.41, and De, = 1.664, (i, = k0.8877i. 

direction. In figure 9(b) the secondary roll cells have disappeared with a decrease in 
aspect ratio to i, while a smaller roll cell is developing near r = 1 for rp, and near 
the centreline for rpi. This cell is fully developed at E = in figure 9(c), and the 
nature of the disturbance for the smaller values of E becomes apparent. Roll cells 
whose diameter scales approximately with the gap width of the discs continue to 
appear. In the subsequent figures 9(f) and 9(e) the number of roll cells increase in 
correspondence with the decreasing aspect ratio. 

The form of the disturbance is very similar to that observed by McKinley et al. 
(1991), except that in the present work, the amplitude of the disturbances are large 
near the outer edge and small near the centreline. In the linear stability region the roll 
cells would first be seen at the outer edge and then appear to travel inwards, as the 
amplitude of the inner cells increased exponentially in time. In McKinley et al. (1991) 
cells of large amplitude were observed initially at both the outer edge and at the 
centreline. A possible reason for this discrepancy is the presence of inertia. Olagunju 
(1994) conducted a regular perturbation analysis in E on the base flow, taking into 
account the presence of inertia. He found that a secondary flow resulted for all values 
of De owing to the non-zero Reynolds number. This flow became unstable owing to 
a blowup in the shear stress at Y = 0, at a critical value of De, and was not due 
to edge effects. This analysis was certainly valid for the range of Reynolds numbers 
dealt with in McKinley et al. (1991). 

Shear thinning of !PI has led to appreciable differences between experimental and 
theoretical values of De, for the Oldroyd-B model. McKinley et al. (1991) suggested 
a method of comparing their experimental values with the analysis of Phan-Thien 
(1983), by allowing A, and hence De, to be a function of the applied shear rate, i.e., 
2 = 2 ( j )  and De = De(j) = 10. For the Oldroyd-B model the constant relaxation 
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FIGURE 9. Disturbance streamlines at ( a )  De, = 7.3262, 0, = -1.15 x lop5 f 0.73831, when E = 1; ( b )  
De, = 5.747, 0, = 6.12 x k0.72911, when E = 0.75; ( c )  De, = 4.071, 0, = -5.84 x 10-6f0.7571i, 
when E = 0.5; ( d )  De, = 2.538, 0, = 1.47 x 0.81561, when E = 0.25; ( e )  De, = 1.664, 
'T, = 6.72 x k0.88771, when E = 0.1,. = 0.41. 
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FIGURE 10. Comparison of computed critical modes with experimental values of McKinley et al. 
for constant and adjusted relaxation times. = 0.41. 

time is determined by the initial value of Y l  to be A1 = 0.794. They used a four- 
mode Bird-DeAguir model to determine ,?(?), and plotted stability diagrams of 
the Weissenberg number Wit= EDe) versus De, for both models. From these we 
determined (approximately) the critical Deborah number for several aspect ratios, for 
both 

The choice of 2 = A(?) results in a significant increase in the correlation between 
experimental results and the theoretical values obtained with the Oldroyd-B model. 

We also note here that the introduction of even a small amount of inertia to the 
governing equations causes a significant reduction of the critical De. For p = 0.41, 
Phan-Thien (1983) predicts De, = 2.51, while Olagunju (1994) predicts De, = 2.21, 
valid for arbitrarily small Reynolds numbers. 

and ,?(it). The results are shown in figure 10. 

8. Conclusions 
Use of a finite geometry to model parallel plate flow of a Boger fluid has resulted in 

qualitative and quantitative agreement between theory and experiment, not only in the 
determination of the critical rotation rate for the onset of elastic instabilities, but also 
in predicting the form of the resulting disturbance, provided that the relaxation time is 
estimated from the actual viscometric data at the shear rate where instability occurs. 
Indeed, if the disturbances, of the non-axisymmetric form 6Re [e("'De)t u(r, z)eim6], 
where m is an integer, are allowed to convect with the base flow, then a spiral 
instability would appear as a wave travelling either from the centre to the outer 
edge or vice-versa, depending on the sign of the spiral angle. From figure 9(e), the 
amplitude of the disturbances is exceedingly small in the centre region. It would then 
appear as if the instabilities start beyond a critical radius. 

One difficulty of the numerical scheme employed is that convergence is slowed for 
small E,  and accurate answers were only available for E above 0.05. This was due to 
a rapidly increasing condition number of the system matrix with increasing N ,  and 
the change in the order of magnitude of the roll cell velocities between the centre of 
the plates and the outer edge, which was magnified with an increasing number of roll 
cells, i.e. a reduced value of E .  
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Recent evidence, not only in parallel plate flow but also in Taylor-Couette, Taylor- 
Dean, and in cone-and-plate flows as well, suggests that non-axisymmetric distur- 
bances may be more unstable than those considered here, and that the most unstable 
mode may alternate between the two types owing to a complex dependence on aspect 
ratio, and fluid elasticity. 

This research is supported by the Australian Research Council (ARC). The support 
is gratefully acknowledged. We wish to thank all referees for their constructive 
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